
A Relationship Guide For Your
Hardware

How to understand the needs of your hardware:
Introduction to data based low-level optimization

Felix Klinge - Senior Software Engineer

Agenda

● High Level vs Low Level optimizations

● Why should I care about low level stuff?

● Example: 2D bitmap rotation

● Naive Implementation

● Optimization 1: Better Execution Unit Utilization

● Optimization 2: Loop Blocking

● Optimization 3: Multithreading

● Optimization 4: SIMD

● Conclusion

● About me

About me

● In the games industry for ~10 years

● Worked mostly on custom engine/game-tech
○ Exclusively in C/C++ (mostly C-like C++)

● Worked on:
○ Lords of the Fallen
○ The Surge
○ Anno 2205
○ Portal Knights
○ Atlas Fallen
○ Unannounced Keen Games Title

High level vs. Low level optimizations

High level

● Reduction of work
● Algorithm improvements
● Finding better math

formulas
● (Compiler optimizations)

High level vs. Low level optimizations

High level

● Reduction of work
● Algorithm improvements
● Finding better math

formulas
● (Compiler optimizations)

Low level

● Better hardware utilization
● Cache aware programming
● “How can I use the hardware to more

efficiently solve my problem?”

Why should I care?

“I just want to program without having to worry about the hardware. If my program
should run on different hardware I just recompile it and be done with it”

Why should I care?

“I just want to program without having to worry about the hardware. If my program
should run on different hardware I just recompile it and be done with it”

“The faster I ship software, the faster I make money - I don’t care how long the program
loads, the faster the program is finished, the better”

Why should I care?

“I just want to program without having to worry about the hardware. If my program
should run on different hardware I just recompile it and be done with it”

“The faster I ship software, the faster I make money - I don’t care how long the program
loads, the faster the program is finished, the better”

It might not feel like it, but today’s software is *slow* if you take into
account how insane the current hardware is. Try using an era appropriate

Win98 machine and you’d be amazed

Why should I care?

“I just want to program without having to worry about the hardware. If my program
should run on different hardware I just recompile it and be done with it”

“The faster I ship software, the faster I make money - I don’t care how long the program
loads, the faster the program is finished, the better”

https://twitter.com/tsoding/status/1636036276687192068

It might not feel like it, but today’s software is *slow* if you take into
account how insane the current hardware is. Try using an era appropriate

Win98 machine and you’d be amazed

https://twitter.com/tsoding/status/1636036276687192068

Why should I care?

This is where we’re at right now (this is *not* a parody):

http://www.youtube.com/watch?v=CT7nnXej2K4

http://www.youtube.com/watch?v=CT7nnXej2K4
http://www.youtube.com/watch?v=CT7nnXej2K4

Example: 2D bitmap rotation
Let’s work with a concrete example during this talk:

● Rotating a 2D image on the CPU with bilinear sampling
● Image is 4096x4096

Example: 2D bitmap rotation
Let’s work with a concrete example during this talk:

● Rotating a 2D image on the CPU with bilinear sampling
● Image is 4096x4096

Bilinear Sampling:

Example: 2D bitmap rotation
Let’s work with a concrete example during this talk:

● Rotating a 2D image on the CPU with bilinear sampling
● Image is 4096x4096

Bilinear Sampling:Input:

● Unrotated 2D image
● Transformation matrix

Example: 2D bitmap rotation
Let’s work with a concrete example during this talk:

● Rotating a 2D image on the CPU with bilinear sampling
● Image is 4096x4096

Bilinear Sampling:Input:

● Unrotated 2D image
● Transformation matrix

Output:

● Rotated 2D image

Example: 2D bitmap rotation
Let’s work with a concrete example during this talk:

● Rotating a 2D image on the CPU with bilinear sampling
● Image is 4096x4096

Bilinear Sampling:Input:

● Unrotated 2D image
● Transformation matrix

Output:

● Rotated 2D image

This example is run on a Intel i9-10980XE CPU

Example: 2D bitmap rotation
Basically a 2D matrix transformation:

● Look at every pixel in the output image

● Transform pixel coordinate using matrix to get coordinate in input image

● (bilinear sample pixel at coordinate)

● Write sampled pixel to output image

Example: 2D bitmap rotation
● The function is called in this context:
void main(const int argc, const char** argv) {

//assume input image is NxN (N==pow of 2)
const image* inputImage = loadImage(argv[1]);
const float rotateAngleInRad = atof(argv[2]);
float rotateTransform[4];
create2DRotateTransform(rotateTransform, rotateAngleInRad);
image* outputImage = allocateEmptyImage(inputImage->size);
timer rotateTimer = createTimer();
rotateTimer.start();
Rotate(outputImage, inputImage, rotateTransform); //<- this is our code
rotateTimer.end();
printf(“Rotation by %.1f degree took %.1fms\n”, rotateAngleInRad, rotateTimer.timeInMilliSeconds());
return;

}

Naive version of rotate algorithm

void Rotate(image* outputImage, const image* inputImage, const float* rotateTransform) {
const unsigned int size = inputImage.size;
for(int y = 0; y < size; ++y){
for(int x = 0; x < size; ++x){

float xt = x, yt = y;
Transform2D(&xt, &yt, rotateTransform);
unsigned int sample = BilinearSampleAtPosition(xt, yt, inputImage);
WriteSampleAtPosition(x, y, sample, outputImage);

}
}

}

Naive version of rotate algorithm
● It works
● Readable code
● …

● First optimization instinct?

Performance baseline:

(Should be run multiple times to get average)

Naive version of rotate algorithm
● It works
● Readable code
● …

● First optimization instinct?

Performance baseline:

○ Optimization efforts should *always* be based on data
(Except for *super* obvious cases)

(Should be run multiple times to get average)

How do we know how the hardware can be optimized for?

How do we know what we can improve on without knowing the hardware?

-> Documentation (RTFM)

AMD: https://gpuopen.com/ryzen-performance/

Intel: https://cdrdv2-public.intel.com/671488/248966-046A-software-optimization-manual.pdf

ARM: https://documentation-service.arm.com/static/5ed4bd67ca06a95ce53f917d?token=

https://gpuopen.com/ryzen-performance/
https://cdrdv2-public.intel.com/671488/248966-046A-software-optimization-manual.pdf
https://documentation-service.arm.com/static/5ed4bd67ca06a95ce53f917d?token=

How do we know how the hardware can be optimized for?

How do we know what we can improve on without knowing the hardware?

-> Documentation (RTFM)

AMD: https://gpuopen.com/ryzen-performance/

Intel: https://cdrdv2-public.intel.com/671488/248966-046A-software-optimization-manual.pdf

ARM: https://documentation-service.arm.com/static/5ed4bd67ca06a95ce53f917d?token=

We’ll focus on Intel for this talk.

https://gpuopen.com/ryzen-performance/
https://cdrdv2-public.intel.com/671488/248966-046A-software-optimization-manual.pdf
https://documentation-service.arm.com/static/5ed4bd67ca06a95ce53f917d?token=

How do we know how the hardware can be optimized for?
It’s in the CPU vendor’s best interest not to have headlines like “My game runs
slower on [CPU from vendor A] than on [CPU from vendor B] but the CPUs
are the same speed!”.

How do we know how the hardware can be optimized for?
It’s in the CPU vendor’s best interest not to have headlines like “My game runs
slower on [CPU from vendor A] than on [CPU from vendor B] but the CPUs
are the same speed!”.

You don’t have to know the *whole* documentation but at the very least make
yourself familiar with the lingo.

How do we know how the hardware can be optimized for?
It’s in the CPU vendor’s best interest not to have headlines like “My game runs
slower on [CPU from vendor A] than on [CPU from vendor B] but the CPUs
are the same speed!”.

You don’t have to know the *whole* documentation but at the very least make
yourself familiar with the lingo.

● Pulling out the SIMD hammer might not always be the first best solution.

How do we know how the hardware can be optimized for?
It’s in the CPU vendor’s best interest not to have headlines like “My game runs
slower on [CPU from vendor A] than on [CPU from vendor B] but the CPUs
are the same speed!”.

You don’t have to know the *whole* documentation but at the very least make
yourself familiar with the lingo.

● Pulling out the SIMD hammer might not always be the first best solution.

● Vendor specific tools will help you collect performance data
○ Intel V-Tune
○ AMD uProf
○ Qualcomm Snapdragon Profiler

Optimization 1: Better Execution Unit Utilization
Running Intel V-Tune Microarchitecture Exploration to get broad idea of
CPU utilization performance metrics of our program.

Optimization 1: Better Execution Unit Utilization
Running Intel V-Tune Microarchitecture Exploration to get broad idea of
CPU utilization performance metrics of our program.

Optimization 1: Better Execution Unit Utilization

Optimization 1: Better Execution Unit Utilization

Strong indication of sub-optimal execution unit utilization

Optimization 1: Better Execution Unit Utilization

Strong indication of sub-optimal execution unit utilization

CPI: Clocks per Instruction, the lower the better.

Optimization 1: Better Execution Unit Utilization

Strong indication of sub-optimal execution unit utilization

CPI: Clocks per Instruction, the lower the better.

High-Level Explanation of Front- and Back-End:

Optimization 1: Better Execution Unit Utilization

Strong indication of sub-optimal execution unit utilization

CPI: Clocks per Instruction, the lower the better.

● Front-End: Transforms ASM into u-Ops

High-Level Explanation of Front- and Back-End:

Optimization 1: Better Execution Unit Utilization

Strong indication of sub-optimal execution unit utilization

CPI: Clocks per Instruction, the lower the better.

● Front-End: Transforms ASM into u-Ops

● Back-End: Issues u-Ops

High-Level Explanation of Front- and Back-End:

Optimization 1: Better Execution Unit Utilization

What are Execution Units?

Optimization 1: Better Execution Unit Utilization

What are Execution Units?

● Most (all?) modern CPUs are superscalar CPUs.

Optimization 1: Better Execution Unit Utilization

What are Execution Units?

● Most (all?) modern CPUs are superscalar CPUs.

● That means that they can execute a certain set of instructions in parallel
(instruction-level parallelism).

Optimization 1: Better Execution Unit Utilization

What are Execution Units?

● Most (all?) modern CPUs are superscalar CPUs.

● That means that they can execute a certain set of instructions in parallel
(instruction-level parallelism).

● What instructions can be executed in parallel is determined by what
execution units are available.

Optimization 1: Better Execution Unit Utilization

What are Execution Units?

● Most (all?) modern CPUs are superscalar CPUs.

● That means that they can execute a certain set of instructions in parallel
(instruction-level parallelism).

● What instructions can be executed in parallel is determined by what
execution units are available.

● Prerequisite: No dependencies

Optimization 1: Better Execution Unit Utilization

Intel® 64 and IA-32 Architectures Optimization Reference Manual Chapter 2.3.1.2

Optimization 1: Better Execution Unit Utilization

Intel® 64 and IA-32 Architectures Optimization Reference Manual Chapter 2.3.1.2

Gives you an idea of what instructions can be parallelized

Optimization 1: Better Execution Unit Utilization

void Rotate(image* outputImage, const image* inputImage, const float* rotateTransform) {
const unsigned int size = inputImage.size;
for(int y = 0; y < size; ++y){
for(int x = 0; x < size; ++x){

float xt = x, yt = y;
Transform2D(&xt, &yt, rotateTransform);
unsigned int sample = BilinearSampleAtPosition(xt, yt, inputImage);
WriteSampleAtPosition(x, y, sample, outputImage);
}

}
}

Going back to our naive example:

Optimization 1: Better Execution Unit Utilization

void Rotate(image* outputImage, const image* inputImage, const float* rotateTransform) {
const unsigned int size = inputImage.size;
for(int y = 0; y < size; ++y){
for(int x = 0; x < size; ++x){

float xt = x, yt = y;
Transform2D(&xt, &yt, rotateTransform);
unsigned int sample = BilinearSampleAtPosition(xt, yt, inputImage);
WriteSampleAtPosition(x, y, sample, outputImage);
}

}
}

Going back to our naive example:

Full of dependencies :(

Optimization 1: Better Execution Unit Utilization
Loop unrolling to the rescue!

Optimization 1: Better Execution Unit Utilization
Loop unrolling to the rescue!
● Each loop iteration is independent of each other so this works out nicely

Optimization 1: Better Execution Unit Utilization
Loop unrolling to the rescue!
● Each loop iteration is independent of each other so this works out nicely
● Naive implementation with 4x loop unrolling:

Optimization 1: Better Execution Unit Utilization
Loop unrolling to the rescue!
● Each loop iteration is independent of each other so this works out nicely
● Naive implementation with 4x loop unrolling:
● Also added specialized functions that work on 4 elements instead of 1

Optimization 1: Better Execution Unit Utilization
Loop unrolling to the rescue!
● Each loop iteration is independent of each other so this works out nicely
● Naive implementation with 4x loop unrolling:

void Rotate(image* outputImage, const image* inputImage, const float* rotateTransform) {
const unsigned int size = inputImage.size;
for(int y = 0; y < size; ++y){
for(int x = 0; x < size; x += 4){

float[] xt = {x+0,x+1,x+2,x+3}, yt = {y, y, y, y};
unsigned int samples[4];
Transform2DMultiple4(&xt, &yt, rotateTransform);
BilinearSamplesAtPositions4(xt, yt, samples, inputImage);
WriteSamplesAtPositions4(xt, yt, samples, outputImage);

}
}

}

● Also added specialized functions that work on 4 elements instead of 1

Optimization 1: Better Execution Unit Utilization
What does V-Tune say?

vs

Optimization 1: Better Execution Unit Utilization
What does V-Tune say?

vs

● Better execution unit utilization

Optimization 1: Better Execution Unit Utilization
What does V-Tune say?

vs

● Better execution unit utilization

● Better code generation by the compiler

Optimization 1: Better Execution Unit Utilization
What does V-Tune say?

vs

● Better execution unit utilization

● Better code generation by the compiler

● Still readable

Optimization 1: Better Execution Unit Utilization
What does V-Tune say?

vs

● Better execution unit utilization

● Better code generation by the compiler

● Still readable

● Only minimal changes needed

Optimization 2: Loop Blocking
Lets look at memory accesses and cache utilization using V-Tune Memory Access Analysis

Ouch

Optimization 2: Loop Blocking
Lets look at memory accesses and cache utilization using V-Tune Memory Access Analysis

Ouch

What could be the reason?

Optimization 2: Loop Blocking
Excourse CPU Caches (High level overview):

Optimization 2: Loop Blocking
Excourse CPU Caches (High level overview):

CPU Cache

KBytes/MBytes

Optimization 2: Loop Blocking
Excourse CPU Caches (High level overview):

CPU Cache Main Memory

KBytes/MBytes GBytes

Optimization 2: Loop Blocking
Excourse CPU Caches (High level overview):

CPU Cache Main Memory

This image has been loaded into memory:

KBytes/MBytes GBytes

Optimization 2: Loop Blocking
Excourse CPU Caches (High level overview):

CPU Cache Main Memory

This image has been loaded into memory:

KBytes/MBytes GBytes

Optimization 2: Loop Blocking
Excourse CPU Caches (High level overview):

CPU Cache Main Memory

This image has been loaded into memory:

Assume we want to access one pixel after another

KBytes/MBytes GBytes

Optimization 2: Loop Blocking
Excourse CPU Caches (High level overview):

CPU Cache Main Memory

This image has been loaded into memory:

Assume we want to access one pixel after another

KBytes/MBytes GBytes

Optimization 2: Loop Blocking
Excourse CPU Caches (High level overview):

CPU Cache Main Memory

This image has been loaded into memory:

Assume we want to access one pixel after another

KBytes/MBytes GBytes

For each access, the CPU first checks the cache

Optimization 2: Loop Blocking
Excourse CPU Caches (High level overview):

CPU Cache Main Memory

This image has been loaded into memory:

Assume we want to access one pixel after another

KBytes/MBytes GBytes

For each access, the CPU first checks the cache

If the data is not in the cache, it gets accessed
from main memory. But instead of just accessing
the one pixel, it moves a cache-line into the cache.

Optimization 2: Loop Blocking
Excourse CPU Caches (High level overview):

CPU Cache Main Memory

This image has been loaded into memory:

Assume we want to access one pixel after another

KBytes/MBytes GBytes

For each access, the CPU first checks the cache

If the data is not in the cache, it gets accessed
from main memory. But instead of just accessing
the one pixel, it moves a cache-line into the cache.

Optimization 2: Loop Blocking
Excourse CPU Caches (High level overview):

CPU Cache Main Memory

This image has been loaded into memory:

Assume we want to access one pixel after another

KBytes/MBytes GBytes This is known as a cache miss

For each access, the CPU first checks the cache

If the data is not in the cache, it gets accessed
from main memory. But instead of just accessing
the one pixel, it moves a cache-line into the cache.

Optimization 2: Loop Blocking
According to Intel® 64 and IA-32 Architectures Software Developer’s Manual Chapter 12.1,
a cache line is 64 bytes

Optimization 2: Loop Blocking
According to Intel® 64 and IA-32 Architectures Software Developer’s Manual Chapter 12.1,
a cache line is 64 bytes

This is done because it is assumed that you’re also interested in neighboring data and
not just one byte (or pixel in this case)

Optimization 2: Loop Blocking
According to Intel® 64 and IA-32 Architectures Software Developer’s Manual Chapter 12.1,
a cache line is 64 bytes

This is done because it is assumed that you’re also interested in neighboring data and
not just one byte (or pixel in this case)

Prefetcher within the CPU will fetch next cache lines in advance if a sequential access
pattern is detected.

Optimization 2: Loop Blocking
CPU has multiple caches in a hierarchy:

● L1 cache per core (very small and very fast)

● L2 cache shared between cores (larger and slower)

● L3 cache shared between cores (largest and slowest)

https://en.wikipedia.org/wiki/Cache_hierarchy

https://en.wikipedia.org/wiki/Cache_hierarchy

Optimization 2: Loop Blocking

Cache Miss
Cache Hit

Optimization 2: Loop Blocking
CPU Cache Main Memory

KBytes/MBytes GBytes

Cache Miss
Cache Hit

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Prefetcher fetches next cache line because of the sequential access pattern

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Prefetcher fetches next cache line because of the sequential access pattern

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Prefetcher fetches next cache line because of the sequential access pattern

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Prefetcher fetches next cache line because of the sequential access pattern

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Prefetcher fetches next cache line because of the sequential access pattern

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
CPU Cache Main Memory

GBytes

for(int i= 0; i < image.size*image.size; ++i) {
//Do something with this pixel…
DoSomething(image.pixel[i]);

}

Assume code like this:

Prefetcher fetches next cache line because of the sequential access pattern

Cache Miss
Cache Hit

KBytes/MBytes

Optimization 2: Loop Blocking
Let’s revisit the algorithm:

Optimization 2: Loop Blocking
Let’s revisit the algorithm:

We want to rotate this image by 50°:

Optimization 2: Loop Blocking
Let’s revisit the algorithm:

We want to rotate this image by 50°:

Optimization 2: Loop Blocking

● Write access is sequential, no problem here

Let’s revisit the algorithm:

We want to rotate this image by 50°:

Optimization 2: Loop Blocking

● Read access is non-sequential
○ Worst case: every read is a cache miss

● Write access is sequential, no problem here

Let’s revisit the algorithm:

We want to rotate this image by 50°:

Optimization 2: Loop Blocking

● Read access is non-sequential
○ Worst case: every read is a cache miss

What can we do about it?

● Write access is sequential, no problem here

Let’s revisit the algorithm:

We want to rotate this image by 50°:

Optimization 2: Loop Blocking
Answer: apply loop blocking (aka strip-mining for 1D data sets) to make

access pattern more local

Optimization 2: Loop Blocking
Answer: apply loop blocking (aka strip-mining for 1D data sets) to make

access pattern more local

Intel® 64 and IA-32 Architectures Optimization Reference Manual Chapter 5.5.3

Optimization 2: Loop Blocking
constexpr int blockSize = 64;
void RotateImageBlock(const int startX, const int startY, image* outputImage, const image* inputImage, const float* rotateTransform) {

for(int y = startY; y < startY + blockSize; ++y) {
for(int x = startX; x < startX + blockSize; x += 4) {

float xt[] = {x+0,x+1,x+2,x+3}, yt[] = {y, y, y, y};
unsigned int samples[4];
Transform2DMultiple4(&xt, &yt, rotateTransform);
BilinearSamplesAtPositions4(xt, yt, samples, inputImage);
WriteSamplesAtPositions4(xt, yt, samples, outputImage);

}
}

}

void Rotate(image* outputImage, const image* inputImage, const float* rotateTransform, int size){
for(int y = 0; y < size; y += blockSize) {
for(int x = 0; x < size; x += blockSize) {

RotateImageBlock(x, y, outputImage, inputImage, rotateTransform);
}
}

}

Optimization 2: Loop Blocking
constexpr int blockSize = 64;
void RotateImageBlock(const int startX, const int startY, image* outputImage, const image* inputImage, const float* rotateTransform) {

for(int y = startY; y < startY + blockSize; ++y) {
for(int x = startX; x < startX + blockSize; x += 4) {

float xt[] = {x+0,x+1,x+2,x+3}, yt[] = {y, y, y, y};
unsigned int samples[4];
Transform2DMultiple4(&xt, &yt, rotateTransform);
BilinearSamplesAtPositions4(xt, yt, samples, inputImage);
WriteSamplesAtPositions4(xt, yt, samples, outputImage);

}
}

}

void Rotate(image* outputImage, const image* inputImage, const float* rotateTransform, int size){
for(int y = 0; y < size; y += blockSize) {
for(int x = 0; x < size; x += blockSize) {

RotateImageBlock(x, y, outputImage, inputImage, rotateTransform);
}
}

}

Optimization 2: Loop Blocking
constexpr int blockSize = 64;
void RotateImageBlock(const int startX, const int startY, image* outputImage, const image* inputImage, const float* rotateTransform) {

for(int y = startY; y < startY + blockSize; ++y) {
for(int x = startX; x < startX + blockSize; x += 4) {

float xt[] = {x+0,x+1,x+2,x+3}, yt[] = {y, y, y, y};
unsigned int samples[4];
Transform2DMultiple4(&xt, &yt, rotateTransform);
BilinearSamplesAtPositions4(xt, yt, samples, inputImage);
WriteSamplesAtPositions4(xt, yt, samples, outputImage);

}
}

}

void Rotate(image* outputImage, const image* inputImage, const float* rotateTransform, int size){
for(int y = 0; y < size; y += blockSize) {
for(int x = 0; x < size; x += blockSize) {

RotateImageBlock(x, y, outputImage, inputImage, rotateTransform);
}
}

}

Optimization 2: Loop Blocking
What does V-Tune say?

vs

● Again, only minimal code changes needed

Optimization 2: Loop Blocking

● Experiment with block size but 64 should be a good first guess

What does V-Tune say?

vs

● Again, only minimal code changes needed

Optimization 2: Loop Blocking

● Experiment with block size but 64 should be a good first guess

What does V-Tune say?

vs

● Again, only minimal code changes needed

● Have to be careful to handle cases where image size < block size

Optimization 2: Loop Blocking

● Experiment with block size but 64 should be a good first guess

What does V-Tune say?

vs

● Again, only minimal code changes needed

● Perfect setup for next optimization

● Have to be careful to handle cases where image size < block size

Optimization 2: Loop Blocking

● Experiment with block size but 64 should be a good first guess

What does V-Tune say?

vs

● Again, only minimal code changes needed

● Perfect setup for next optimization

● Have to be careful to handle cases where image size < block size

Optimization 2: Loop Blocking

● Experiment with block size but 64 should be a good first guess

What does V-Tune say?

vs

● Again, only minimal code changes needed

● Perfect setup for next optimization

● Have to be careful to handle cases where image size < block size

Optimization 3: Multithreading

● So far we only used one core

Optimization 3: Multithreading

● So far we only used one core

● All modern CPUs have multiple cores

Optimization 3: Multithreading

● So far we only used one core

● All modern CPUs have multiple cores

● Nowadays you *have* to know how to utilize multiple cores *if* your domain is
performance sensitive

Optimization 3: Multithreading

● So far we only used one core

● All modern CPUs have multiple cores

● Nowadays you *have* to know how to utilize multiple cores *if* your domain is
performance sensitive

● Lots of traps to fall into

Optimization 3: Multithreading

● So far we only used one core

● All modern CPUs have multiple cores

● Nowadays you *have* to know how to utilize multiple cores *if* your domain is
performance sensitive

● Lots of traps to fall into

● Rule of thumb for multithreading code that shares data:
○ Better to have something that works than something that’s fast (finding and fixing

multithreading bugs require good debug skills)

Optimization 3: Multithreading

Optimization 3: Multithreading
● Job system lends itself perfectly for this use case

○ General idea: break work down into independent jobs, assign threads as workers, each
worker works on one job

Optimization 3: Multithreading
● Job system lends itself perfectly for this use case

○ General idea: break work down into independent jobs, assign threads as workers, each
worker works on one job

● One producer, multiple consumer
○ Main thread creates work, worker consume work

Optimization 3: Multithreading

Thread #1 (consumer)

● Job system lends itself perfectly for this use case
○ General idea: break work down into independent jobs, assign threads as workers, each

worker works on one job

● One producer, multiple consumer
○ Main thread creates work, worker consume work

Main Thread
(producer/consumer)

Optimization 3: Multithreading

Thread #1 (consumer)

● Job system lends itself perfectly for this use case
○ General idea: break work down into independent jobs, assign threads as workers, each

worker works on one job

● One producer, multiple consumer
○ Main thread creates work, worker consume work

● What would be a good granularity for a job?
○ Loop box optimization makes this obvious Main Thread

(producer/consumer)

Optimization 3: Multithreading
Quick overview of things we have to do to add a job system

● Create worker threads

● Create independent jobs

● Schedule jobs

● Wait until all jobs are finished

Optimization 3: Multithreading

● Ideally utilize all cores - find out how many cores exist
Create worker threads

○ Use std::thread::hardware_concurrency() if you use C++11 or newer
○ Use OS specific functions if you use C or an earlier C``++ standard
○ GetLogicalProcessorInformation() for win32
○ get_nprocs() for posix

std::thread** CreateWorker(SharedWorkerData* workerData){
unsigned int workerCount = std::thread::hardware_concurrency()-1u;
std::thread** worker = new std::thread*[workerCount];
for(int i = 0; i < workerCount; ++i){

worker[i] = new std::thread(&WorkerMain, workerData);
}
return worker;

}

Optimization 3: Multithreading
Create independent jobs

struct RotateJobData {
image* outputImage;
const image* inputImage;
const float* rotateTransform;
int startX;
int startY;

};

● Group job data into new data structure

Optimization 3: Multithreading

struct SharedWorkerData {
int jobCount;
RotateJobData* jobs;
std::mutex* jobLock;

};

● Create shared data for all worker
SharedWorkerData* CreateSharedWorkerData(int blockSize, const
image* inputImage, image* outputImage, const float* rotateTransform) {

const int jobCount = inputImage->size / blockSize;
SharedWorkerData* sharedWorkerData = new SharedWorkerData;
sharedWorkerData->jobCount = imageSize / blockSize;
sharedWorkerData->jobLock = new std::mutex();
sharedWorkerData->jobs = new RotateJobData[jobCount];
for(int i = 0; i < jobCount; ++i){

sharedWorkerData->jobs[i].outputImage = outputImage;
sharedWorkerData->jobs[i].inputImage = inputImage;
sharedWorkerData->rotateTransform = rotateTransform;
sharedWorkerData->startX = x; sharedWorkerData->startY = y;
x += blockSize;
if(x > size) { x = 0; y += blockSize; }

}
return sharedWorkerData;

}

Optimization 3: Multithreading
● Finally, add worker function that does the work

void WorkerMain(SharedWorkerData* sharedData){
while(true){

RotateJobData* jobData;
if(sharedData->jobLock.lock()) {

if(sharedData->jobCount == 0)
return;

jobData = &sharedData[sharedData->jobCount--];
sharedData->jobLock.unlock();

}
RotateImageBlock(jobData->startX, jobData->startY, jobData->outputImage,

jobData->inputImage, jobData->rotateTransform);
}

}

Optimization 3: Multithreading
● Rotate function now just has to schedule the jobs

void Rotate(image* outputImage, const image* inputImage, const float* rotateTransform){
const int blockSize = 64;
SharedWorkerData* sharedWorkerData = CreateSharedWorkerData(blockSize, inputimage,

outputImage, rotateTransform);
std::thread** workers = CreateWorker(sharedWorkerData);
WorkerMain(sharedWorkerData);
for(int i = 0; i < std::thread::hardware_concurrency-1u; ++i){

workers[i]->join();
}

}

○ Also helps with work

○ After that, waits for all workers to finish

Optimization 3: Multithreading
● Rotate function now just has to schedule the jobs

void Rotate(image* outputImage, const image* inputImage, const float* rotateTransform){
const int blockSize = 64;
SharedWorkerData* sharedWorkerData = CreateSharedWorkerData(blockSize, inputimage,

outputImage, rotateTransform);
std::thread** workers = CreateWorker(sharedWorkerData);
WorkerMain(sharedWorkerData);
for(int i = 0; i < std::thread::hardware_concurrency-1u; ++i){

workers[i]->join();
}

}

○ Also helps with work

○ After that, waits for all workers to finish

Optimization 3: Multithreading
● Rotate function now just has to schedule the jobs

void Rotate(image* outputImage, const image* inputImage, const float* rotateTransform){
const int blockSize = 64;
SharedWorkerData* sharedWorkerData = CreateSharedWorkerData(blockSize, inputimage,

outputImage, rotateTransform);
std::thread** workers = CreateWorker(sharedWorkerData);
WorkerMain(sharedWorkerData);
for(int i = 0; i < std::thread::hardware_concurrency-1u; ++i){

workers[i]->join();
}

}

○ Also helps with work

○ After that, waits for all workers to finish

● If you’re using an existing engine or framework, job system is most likely
already in place

○ Eg: Job System in Unity https://docs.unity3d.com/Manual/JobSystem.html

● Multiple job systems with different granularities not uncommon

○ Jobs that have to finish this frame (will block if not finished by end of frame)

○ Jobs that can run over multiple frames without blocking

Optimization 3: Multithreading

https://docs.unity3d.com/Manual/JobSystem.html

Optimization 3: Multithreading
● Many traps to fall into

○ False sharing (Performance)
○ Race conditions (Behavior)
○ Deadlocks (Crashes)

Optimization 3: Multithreading
● Many traps to fall into

○ False sharing (Performance)
○ Race conditions (Behavior)
○ Deadlocks (Crashes)

Optimization 3: Multithreading
● Many traps to fall into

● Make data sharing between threads as simple as possible
○ Simple queue will fit most use cases

○ False sharing (Performance)
○ Race conditions (Behavior)
○ Deadlocks (Crashes)

Optimization 3: Multithreading
● Many traps to fall into

● Make data sharing between threads as simple as possible
○ Simple queue will fit most use cases

● Requirements might change between platforms
○ Eg: Busy-waiting on PC more acceptable than on mobile (battery life)

Optimization 4: SIMD
SIMD = Single Instruction Multiple Data

Optimization 4: SIMD
SIMD = Single Instruction Multiple Data

Instruction Set + Registers that work on multiple pieces of data at once

Optimization 4: SIMD
SIMD = Single Instruction Multiple Data

Instruction Set + Registers that work on multiple pieces of data at once

Example multiplying numbers:

Optimization 4: SIMD
SIMD = Single Instruction Multiple Data

Instruction Set + Registers that work on multiple pieces of data at once

Example multiplying numbers:

void scalarMul(float* values, float multiplier)

{

values[0] *= multiplier;

values[1] *= multiplier;

values[2] *= multiplier;

values[3] *= multiplier;

}

Scalar:

Optimization 4: SIMD
SIMD = Single Instruction Multiple Data

Instruction Set + Registers that work on multiple pieces of data at once

Example multiplying numbers:

void scalarMul(float* values, float multiplier)

{

values[0] *= multiplier;

values[1] *= multiplier;

values[2] *= multiplier;

values[3] *= multiplier;

}

void simdMul(float* values, float multiplier)

{

__m128 val = _mm_load_ps(values);

__m128 mul = _mm_set_ps1(multiplier);

__m128 res = _mm_mul_ps(val, mul);

_mm_store_ps(values, res);

}

Scalar: SIMD:

Optimization 4: SIMD
Generally also called “Vectorization”

Compilers have a feature called “Auto-Vectorization” that theoretically detects code
that can be transformed to be used with SIMD intrinsic.

Optimization 4: SIMD

Can we rely on the compiler’s auto-vectorization?

Optimization 4: SIMD

Can we rely on the compiler’s auto-vectorization?

“The compiler will optimize it!”

Optimization 4: SIMD

Can we rely on the compiler’s auto-vectorization?

“The compiler will optimize it!”

Optimization 4: SIMD
● Gut feeling: 4x loop unrolled version should be trivial to auto-vectorize

Optimization 4: SIMD
● Gut feeling: 4x loop unrolled version should be trivial to auto-vectorize

○ Gut feeling doesn’t count, let’s check the data

Optimization 4: SIMD
● Gut feeling: 4x loop unrolled version should be trivial to auto-vectorize

○ Gut feeling doesn’t count, let’s check the data

○ Either look at the generated ASM code or check V-Tune

Optimization 4: SIMD
● Gut feeling: 4x loop unrolled version should be trivial to auto-vectorize

○ Gut feeling doesn’t count, let’s check the data

○ Either look at the generated ASM code or check V-Tune

● V-Tune HPC Performance Characterization tells us the harsh truth:

Optimization 4: SIMD
● Gut feeling: 4x loop unrolled version should be trivial to auto-vectorize

○ Gut feeling doesn’t count, let’s check the data

○ Either look at the generated ASM code or check V-Tune

● V-Tune HPC Performance Characterization tells us the harsh truth:

Compiled with msvc 19.33.31630 (ships with VS2022) with compiler
options -O2 -arch:avx2

Mileage may vary with a different compiler

Optimization 4: SIMD
● Gut feeling: 4x loop unrolled version should be trivial to auto-vectorize

○ Gut feeling doesn’t count, let’s check the data

○ Either look at the generated ASM code or check V-Tune

● V-Tune HPC Performance Characterization tells us the harsh truth:

Compiled with msvc 19.33.31630 (ships with VS2022) with compiler
options -O2 -arch:avx2

Mileage may vary with a different compiler

Optimization 4: SIMD
Let’s check the ASM for good measure
(compiled with msvc flags -O2 -arch:AVX2)

Optimization 4: SIMD

void Transform2DMultiple4(float* x, float* y,

const float* mat)

{

for(int i = 0; i < 4; ++i)

{

float xx = x[i] * mat[0] + y[i] * mat[1];

float yy = x[i] * mat[2] + y[i] * mat[3];

x[i] = xx;

y[i] = yy;

}

}

Let’s check the ASM for good measure
(compiled with msvc flags -O2 -arch:AVX2)

Optimization 4: SIMD

void Transform2DMultiple4(float* x, float* y,

const float* mat)

{

for(int i = 0; i < 4; ++i)

{

float xx = x[i] * mat[0] + y[i] * mat[1];

float yy = x[i] * mat[2] + y[i] * mat[3];

x[i] = xx;

y[i] = yy;

}

}

Let’s check the ASM for good measure
(compiled with msvc flags -O2 -arch:AVX2)

Optimization 4: SIMD

void Transform2DMultiple4(float* x, float* y,

const float* mat)

{

for(int i = 0; i < 4; ++i)

{

float xx = x[i] * mat[0] + y[i] * mat[1];

float yy = x[i] * mat[2] + y[i] * mat[3];

x[i] = xx;

y[i] = yy;

}

}

Let’s check the ASM for good measure
(compiled with msvc flags -O2 -arch:AVX2)

All scalar :(

Optimization 4: SIMD
void Transform2DMultiple4(float* x, float* y, const

float* mat)

{

__m128 xx = _mm_load_ps(x);

__m128 yy = _mm_load_ps(y);

__m128 mat00 = _mm_set_ps1(mat[0]);

__m128 mat01 = _mm_set_ps1(mat[1]);

__m128 mat10 = _mm_set_ps1(mat[2]);

__m128 mat11 = _mm_set_ps1(mat[3]);

__m128 xxx = _mm_add_ps(_mm_mul_ps(xx,

mat00), _mm_mul_ps(yy, mat01));

__m128 yyy = _mm_add_ps(_mm_mul_ps(xx,

mat10), _mm_mul_ps(yy, mat11));

_mm_store_ps(x, xxx);

_mm_store_ps(y, yyy);

}

(compiled with msvc flags -O2)

Optimization 4: SIMD
void Transform2DMultiple4(float* x, float* y, const

float* mat)

{

__m128 xx = _mm_load_ps(x);

__m128 yy = _mm_load_ps(y);

__m128 mat00 = _mm_set_ps1(mat[0]);

__m128 mat01 = _mm_set_ps1(mat[1]);

__m128 mat10 = _mm_set_ps1(mat[2]);

__m128 mat11 = _mm_set_ps1(mat[3]);

__m128 xxx = _mm_add_ps(_mm_mul_ps(xx,

mat00), _mm_mul_ps(yy, mat01));

__m128 yyy = _mm_add_ps(_mm_mul_ps(xx,

mat10), _mm_mul_ps(yy, mat11));

_mm_store_ps(x, xxx);

_mm_store_ps(y, yyy);

}

(compiled with msvc flags -O2)

Optimization 4: SIMD
Quick excourse:

Optimization 4: SIMD
Quick excourse:

● Don’t be intimidated by “scary looking” ASM code

Optimization 4: SIMD
Quick excourse:

● Don’t be intimidated by “scary looking” ASM code

○ Might look overwhelming first but try to get past the first feeling of overwhelmingness

Optimization 4: SIMD
Quick excourse:

● Don’t be intimidated by “scary looking” ASM code

○ Might look overwhelming first but try to get past the first feeling of overwhelmingness

● Use godbolt compiler explorer to get a better idea of how your code maps to ASM
instructions

Optimization 4: SIMD
Quick excourse:

● Don’t be intimidated by “scary looking” ASM code

○ Might look overwhelming first but try to get past the first feeling of overwhelmingness

● Use godbolt compiler explorer to get a better idea of how your code maps to ASM
instructions

○ It even comes with documentation for ASM instructions if you hover over them in godbolt

Optimization 4: SIMD
Quick excourse:

● Don’t be intimidated by “scary looking” ASM code

○ Might look overwhelming first but try to get past the first feeling of overwhelmingness

● Use godbolt compiler explorer to get a better idea of how your code maps to ASM
instructions

○ It even comes with documentation for ASM instructions if you hover over them in godbolt

● Play with different compiler options to see how this affects ASM code
generation

Optimization 4: SIMD
Quick excourse:

● Don’t be intimidated by “scary looking” ASM code

○ Might look overwhelming first but try to get past the first feeling of overwhelmingness

● Use godbolt compiler explorer to get a better idea of how your code maps to ASM
instructions

○ It even comes with documentation for ASM instructions if you hover over them in godbolt

● Play with different compiler options to see how this affects ASM code
generation

https://godbolt.org/

https://godbolt.org/

Optimization 4: SIMD
● If you want to make *sure* your code gets vectorized, do it yourself

Optimization 4: SIMD

● Which instruction set? (Easy for ARM, since there’s only NEON)
● If you want to make *sure* your code gets vectorized, do it yourself

Optimization 4: SIMD

● Which instruction set? (Easy for ARM, since there’s only NEON)
○ MMX (jk, this is ancient)

● If you want to make *sure* your code gets vectorized, do it yourself

Optimization 4: SIMD

● Which instruction set? (Easy for ARM, since there’s only NEON)
○ MMX (jk, this is ancient)
○ SSE2

● If you want to make *sure* your code gets vectorized, do it yourself

Optimization 4: SIMD

● Which instruction set? (Easy for ARM, since there’s only NEON)
○ MMX (jk, this is ancient)
○ SSE2
○ SSSE3

● If you want to make *sure* your code gets vectorized, do it yourself

Optimization 4: SIMD

● Which instruction set? (Easy for ARM, since there’s only NEON)
○ MMX (jk, this is ancient)
○ SSE2
○ SSSE3
○ SSE4

● If you want to make *sure* your code gets vectorized, do it yourself

Optimization 4: SIMD

● Which instruction set? (Easy for ARM, since there’s only NEON)
○ MMX (jk, this is ancient)
○ SSE2
○ SSSE3
○ SSE4
○ AVX

● If you want to make *sure* your code gets vectorized, do it yourself

Optimization 4: SIMD

● Which instruction set? (Easy for ARM, since there’s only NEON)
○ MMX (jk, this is ancient)
○ SSE2
○ SSSE3
○ SSE4
○ AVX
○ AVX-512

● If you want to make *sure* your code gets vectorized, do it yourself

Optimization 4: SIMD

● Which instruction set? (Easy for ARM, since there’s only NEON)
○ MMX (jk, this is ancient)
○ SSE2
○ SSSE3
○ SSE4
○ AVX
○ AVX-512

● If you want to make *sure* your code gets vectorized, do it yourself

● Decision is dependent on support of target hardware
○ E.g: AVX-512 support is very limited

Optimization 4: SIMD

● Which instruction set? (Easy for ARM, since there’s only NEON)
○ MMX (jk, this is ancient)
○ SSE2
○ SSSE3
○ SSE4
○ AVX
○ AVX-512

● Rule of thumb: Steam hardware survey
○ https://store.steampowered.com/hwsurvey/Steam-Hardware-

Software-Survey-Welcome-to-Steam

● If you want to make *sure* your code gets vectorized, do it yourself

● Decision is dependent on support of target hardware
○ E.g: AVX-512 support is very limited

https://store.steampowered.com/hwsurvey/Steam-Hardware-Software-Survey-Welcome-to-Steam

Optimization 4: SIMD

Optimization 4: SIMD
● SSE2&SSE3 safe to use

○ “even a microwave has SSE2 support”

Optimization 4: SIMD
● SSE2&SSE3 safe to use

○ “even a microwave has SSE2 support”

● AVX2 tempting but have to check for support

Optimization 4: SIMD
● SSE2&SSE3 safe to use

○ “even a microwave has SSE2 support”

● AVX2 tempting but have to check for support
○ Support has to be checked at runtime using CPUID

Optimization 4: SIMD
● SSE2&SSE3 safe to use

○ “even a microwave has SSE2 support”

● AVX2 tempting but have to check for support
○ Support has to be checked at runtime using CPUID
○ Intel® 64 and IA-32 Architectures Software Developer’s

Manual Volume 2A: Instruction Set Reference Table 3-8

Optimization 4: SIMD

int info[4];

__cpuid(info, 0x07);

if(info[1] & (1<<5)){

printf("AVX2 support!");

} else {

printf("No AVX2 support!");

}

● SSE2&SSE3 safe to use
○ “even a microwave has SSE2 support”

● AVX2 tempting but have to check for support
○ Support has to be checked at runtime using CPUID
○ Intel® 64 and IA-32 Architectures Software Developer’s

Manual Volume 2A: Instruction Set Reference Table 3-8

int info[4];

__cpuid(info, 0x07);

if(info[1] & (1<<5)){

printf("AVX2 support!");

} else {

printf("No AVX2 support!");

}

Optimization 4: SIMD
● SSE2&SSE3 safe to use

○ “even a microwave has SSE2 support”

● AVX2 tempting but have to check for support
○ Support has to be checked at runtime using CPUID
○ Intel® 64 and IA-32 Architectures Software Developer’s

Manual Volume 2A: Instruction Set Reference Table 3-8

https://learn.microsoft.com/en-

us/cpp/intrinsics/cpuid-cpuidex

https://learn.microsoft.com/en-us/cpp/intrinsics/cpuid-cpuidex

Optimization 4: SIMD
● Problem lends itself to be processes by SIMD instructions

○ 4 Pixel im parallel with SSE, 8 with AVX and 16 with AVX-512

Optimization 4: SIMD
● Problem lends itself to be processes by SIMD instructions

○ 4 Pixel im parallel with SSE, 8 with AVX and 16 with AVX-512
● Code too long to make sense to show here in detail, but for good measure:

Optimization 4: SIMD
● Problem lends itself to be processes by SIMD instructions

○ 4 Pixel im parallel with SSE, 8 with AVX and 16 with AVX-512
● Code too long to make sense to show here in detail, but for good measure:

Optimization 4: SIMD
● Problem lends itself to be processes by SIMD instructions

○ 4 Pixel im parallel with SSE, 8 with AVX and 16 with AVX-512
● Code too long to make sense to show here in detail, but for good measure:

Optimization 4: SIMD
● Code changes necessary:

void WorkerMain(SharedWorkerData* sharedData){
while(true) {

RotateJobData* jobData;
if(sharedData->jobLock.lock()){

if(sharedData->jobCount == 0)
return;

jobData = &sharedData[sharedData->jobCount--];
sharedData->jobLock.unlock();

}
if(AVX2SupportDetected()) //Check for AVX2 support using CPUID
RotateImageBlockAVX2(jobData->startX, jobData->startY, jobData->outputImage,

jobData->inputImage, jobData->rotateTransform);
else

RotateImageBlock(jobData->startX, jobData->startY,jobData->outputImage, jobData->inputImage,
jobData->rotateTransform);

}
}

Optimization 4: SIMD
What does VTune say?

Optimization 4: SIMD
What does VTune say?

Optimization 4: SIMD
What does VTune say?

Even tells us what instruction sets have
been used:

Optimization 4: SIMD
What does VTune say?

Even tells us what instruction sets have
been used:

Optimization 4: SIMD
What does VTune say?

Even tells us what instruction sets have
been used:

Optimization 4: SIMD

● Most invasive code change

Optimization 4: SIMD

● Most invasive code change
● Scalar code path still needed (in case hardware architecture doesn’t

support AVX2)

Optimization 4: SIMD

● Most invasive code change

● Set of people who can debug and read this code has been reduced
significantly

● Scalar code path still needed (in case hardware architecture doesn’t
support AVX2)

Optimization 4: SIMD

● Most invasive code change

● Set of people who can debug and read this code has been reduced
significantly

● Nice tradeoff between SIMD speed & code readability: Intel ISPC
https://ispc.github.io/ (Compiler build around code vectorization)

● Scalar code path still needed (in case hardware architecture doesn’t
support AVX2)

https://ispc.github.io/

Optimization 4: SIMD

● Most invasive code change

● Set of people who can debug and read this code has been reduced
significantly

● Nice tradeoff between SIMD speed & code readability: Intel ISPC
https://ispc.github.io/ (Compiler build around code vectorization)

● Intel® Intrinsics Guide (SSE Instruction set overview)
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

● Scalar code path still needed (in case hardware architecture doesn’t
support AVX2)

https://ispc.github.io/
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

Further Work
We could do more:

Further Work
We could do more:

● Add AVX-512 path on supported hardware

Further Work
We could do more:

● Add AVX-512 path on supported hardware

● Let each worker write into its own bitmap and merge later

Further Work
We could do more:

● Add AVX-512 path on supported hardware

● Let each worker write into its own bitmap and merge later

● Manually prefetch next samples using PrefetchCacheLine() (_mm_prefetch())

○ https://learn.microsoft.com/en-us/windows/win32/api/winnt/nf-winnt-prefetchcacheline

https://learn.microsoft.com/en-us/windows/win32/api/winnt/nf-winnt-prefetchcacheline

Further Work
We could do more:

● Add AVX-512 path on supported hardware

● Let each worker write into its own bitmap and merge later

● Manually prefetch next samples using PrefetchCacheLine() (_mm_prefetch())

○ https://learn.microsoft.com/en-us/windows/win32/api/winnt/nf-winnt-prefetchcacheline

But: Also important to know when to stop - All of the above introduces more
complexity & more code - which has the potential of introducing more bugs and worse
maintenance.

https://learn.microsoft.com/en-us/windows/win32/api/winnt/nf-winnt-prefetchcacheline

Result

Loop unrolling

Loop Blocking

Multithreading

SIMD

Conclusion
● Never assume, always measure

Conclusion
● Never assume, always measure

○ Data might even be very different between CPUs (instruction have been
implemented differently or even emulated)

Conclusion
● Never assume, always measure

○ Data might even be very different between CPUs (instruction have been
implemented differently or even emulated)

○ PDEP as an example of an instruction with vastly different performance metrics
between different CPUs

Conclusion
● Never assume, always measure

○ Data might even be very different between CPUs (instruction have been
implemented differently or even emulated)

https://www.anandtech.com/show/16214/amd-zen-3-ryzen-deep-dive-review-5950x-5900x-5800x-and-
5700x-tested/6

○ PDEP as an example of an instruction with vastly different performance metrics
between different CPUs

https://www.anandtech.com/show/16214/amd-zen-3-ryzen-deep-dive-review-5950x-5900x-5800x-and-5700x-tested/6

Conclusion
● Know your target hardware (RTFM)

○ x86_64 & ARM aren’t going away any time soon

Conclusion
● Know your target hardware (RTFM)

○ x86_64 & ARM aren’t going away any time soon

● Make yourself familiar with vendor specific profilers

Conclusion
● Know your target hardware (RTFM)

○ x86_64 & ARM aren’t going away any time soon

○ Only for low-level optimization though. For high-level stuff I’d use Superluminal
or other sample-based profilers.

● Make yourself familiar with vendor specific profilers

Conclusion

● Verify your assumptions regarding compiler optimizations

● Know your target hardware (RTFM)
○ x86_64 & ARM aren’t going away any time soon

○ Only for low-level optimization though. For high-level stuff I’d use Superluminal
or other sample-based profilers.

● Make yourself familiar with vendor specific profilers

Conclusion

● Verify your assumptions regarding compiler optimizations

● SIMD might not always be the best first choice

● Know your target hardware (RTFM)
○ x86_64 & ARM aren’t going away any time soon

○ Only for low-level optimization though. For high-level stuff I’d use Superluminal
or other sample-based profilers.

● Make yourself familiar with vendor specific profilers

Conclusion

● Verify your assumptions regarding compiler optimizations

● SIMD might not always be the best first choice

● Know your target hardware (RTFM)
○ x86_64 & ARM aren’t going away any time soon

○ Only for low-level optimization though. For high-level stuff I’d use Superluminal
or other sample-based profilers.

● Make yourself familiar with vendor specific profilers

● Know when to stop (Ideally you’d know your performance budget)

Where to go from here?
● Mike Acton “Data-Oriented Design and C++”

https://www.youtube.com/watch?v=rX0ItVEVjHc
● Casey Muratori “‘Clean Code’, Horrible Performance”

https://www.youtube.com/watch?v=tD5NrevFtbU&t=1s
● Jon Blow “Preventing the Collapse of Civilization”

https://www.youtube.com/watch?v=q3OCFfDStgM
● Ulrich Drepper “What every programmer should know about memory”

https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
● John L. Hennessy, David A. Patterson “Computer Architecture”

https://www.oreilly.com/library/view/computer-architecture-5th/9780123838735/
● Scott Meyers “CPU Cache and why you care”

https://www.youtube.com/watch?v=WDIkqP4JbkE

https://www.youtube.com/watch?v=rX0ItVEVjHc
https://www.youtube.com/watch?v=tD5NrevFtbU&t=1s
https://www.youtube.com/watch?v=q3OCFfDStgM
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf
https://www.oreilly.com/library/view/computer-architecture-5th/9780123838735/
https://www.youtube.com/watch?v=WDIkqP4JbkE

Thanks for your attention!

Reach out in case of questions!

@FelixK_15

Felix Klinge

felix [at] k15tech [dot] com

@FelixK15 (gamedev.place)

