




Let me introduce me first.

Hi, I’m Felix and I’ve been a programmer in the games industry for roughly 10 years.

During my time in the industry, I’ve been mostly working on custom game- and engine tech for various companies like Ubisoft, Deck13, 

Keen Games and now, Unity.



Let’s first draw a clear line between what actually is “high level” and “low level” optimizations to focus on what I’ll be talking about in this talk.

High level optimizations are optimizations that don’t take the hardware into account. That could be things like reducing the amount of work 

needed (shortening an algorithm), improving upon an existing algorithm or using a different algorithm that better fits the problem space or 

finding better math formulas/shortening existing math formulas. Compiler optimizations could be considered high level optimizations but they 

ultimivately will end up in the low-level optimization territory.

Low Level optimizations on the other hand are optimizations that take the hardware into account to achieve better hardware utlization by 

incorporating cache aware programming. Basically you ask yourself the question “how can I use the hardware to more efficiently solve my 

problem?”
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Before going into low level optimization I want to emphasize why you should care about it.

I’ve read statements over the years that go like “yeah, I don’t really need to know, I just want my program to work” or “time is money, 

investing time into optimizations (even high level) is a waste of time if it means that the programmer has to spent more time on the project”.

Especially the last one is a real world problem. 

The problem with these mindsets however is that software is getting slower and slower. I don’t necessarily mean video games but software 

in general. Your Word, Browsers, Text Editors etc. Everything is so far abstracted from the hardware that nobody has any idea anymore 

what actual instructions are actually being processed by the CPU.

This twitter video encapsulates perfectly what I’m talking about.
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I also wanted to show this video which recently has been shared on Twitter.

This is a video of Microsoft Teams, a Slack-like communication program. In this video they present new performance improvements.

I’ll only show the first improvement they show in this video, namely a faster startup time.

In this video they show that the startup time went from 22.2s to 9.1s.

I’ll let you draw your own conclusions but I want to throw in here that the laptop that I’m showing this presentation on reboots in about 8s.



Lets define a concrete example that we’ll use as our problem to optimize in this talk.

For this talk we’ll be looking at an algorithm that rotates a 2D bitmap by an arbitrary angle.

Since some sampling has to be done a bilinear sampling should be implemented.

The input for our algorithm will be an image and a transformation matrix that represents the rotation

The output will be the rotated image
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The algorithm itself is basically a 2D matrix transform

And the logic is:

Look at each pixel,

Transform the coordinates

Sample pixel from input image using transformed coordinates

Write sample to output pixel

The expected result is shown in the picture



This will be the context in which our function is called.

The image that we’ll be rotating will be loaded from disc and the 2D rotation matrix will be computed based on the angle that we should 

rotate the image by.

After that a function named Rotate() is being called.

This will be the function that we’ll implement and optimize during this talk.

To get some performance data, we’ll time this function and print the duration in milliseconds.



Let’s first start with a naive version of the algorithm.

To keep things simple I assume that Transform2D, BilinearSampleAtPosition and WriteSampleAtPosition are all given and are being inlined

by the compiler.

The implementation details of those function doesn’t *really* matter for the first couple of optimizations that we’ll apply.

For completeness:

Transform2D transforms a 2D coordinate using the given 2x2 transformation matrix

BilinearSampleAtPosition performs a bilinear sampling at the given coordinate (+ performance mirror addressing if the coordinate is out of 

bounds)

WriteSampleAtPosition writes the sample at the given coordinate to the image



Let’s review this approach:
It works
I would argue that the code is readable and easy to follow
But other than that, that’s about it

This is our current performance baseline - around 205ms. A far cry from real time (real time would be if this function executes faster than 16.6ms for 60hz 
or 33.3ms for 30hz).
Since there will always be some variation in the timing, this should be run multiple times - the resources of your CPU are shared by all running processes 
so variations here are expected.

Question to the audience - What would be your first optimization instinct?
*discuss with audience*

This is all fine and good but in general all optimization efforts should always be backed up by data - except for super obvious cases like iterating over a 2d 
array in a column major order.
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But how do we know how we can utilize the hardware to get better runtime performance?

Well, I hate to break it to you but at the core you’ll have to read the documentation *pull out printed copy of Intel Software Optimization 

Guide*

Yes, this big book - but don’t be discourage by this, you really don’t need to know *all* of it and there are some talks out there that talk about 

some

Of the informations in here - I’ll reference some of them at the end of this presentation.

Generally these are the links that you’d want to use if you’re looking for the documentation for a specific CPU vendor.

For this talk we’ll focus on intel because it’s what I’m most familiar with. 
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The reason these documentations are so big is of course because the CPU vendor doesn’t want to see headlines like this.

And again, you don’t need to know the *whole* documentation but you should familiarize yourself with the lingo.

Knowing the hardware will let you make more subtle changes to your code to reach your performance goals without having to pull out the 

SIMD hammer as your first instinct.

To get more in-depth hardware base performance data you can use one of these vendor specific profilers.
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Ok, since we’re focusing on intel for this talk, let’s pull out V-Tune and run the “Microarchitecture Exploration” analysis to get a broad idea of 

the CPU utilization performance metrics of our program.

Running this on our executable will present us with this overview. This might look overwhelming at first but we’ll break it down here.

First we’ll have to find the function that we’re interested in, which we can find right here.
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Let’s enhance what we see.

Let’s focus on the CPI Rate and Front- & Back-End utlization of our function.

These numbers indicate that there’s some room for improvements when it comes to execution unit utilization.

If you don’t know what an execution unit is, I’ll explain it on the next slide.

But let me quickly explain what CPI, Front- and Back-End is.

CPI is the Clocks per Instruction and in general, the lower this number is, the better

Front-End is what converts the ASM code, generated by the compiler, into micro-operations (u-ops). You can think of u-ops as the native 

language of your CPU - it’s one layer below ASM.

The Back-End is then what actually executes these u-ops by using the available execution units.
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So let me quickly talk about what an execution unit actually is.

All modern CPUs are superscalar CPUs, that means that certain instruction can be run in parallel - this is called “instruction-level-
parallelism”.
The available execution units indicate what instructions can be parallelized - we’ll go over what that means on the next slide.

The prerequisite for instruction-level-parallelism is that there are no dependencies between instructions.

That means that something like 
A = B+C
D = A+B

Can’t be parallelized because the 2nd expression depends on the outcome of the 1st expressions



So let me quickly talk about what an execution unit actually is.

All modern CPUs are superscalar CPUs, that means that certain instruction can be run in parallel - this is called “instruction-level-
parallelism”.
The available execution units indicate what instructions can be parallelized - we’ll go over what that means on the next slide.

The prerequisite for instruction-level-parallelism is that there are no dependencies between instructions.

That means that something like 
A = B+C
D = A+B

Can’t be parallelized because the 2nd expression depends on the outcome of the 1st expressions



So let me quickly talk about what an execution unit actually is.

All modern CPUs are superscalar CPUs, that means that certain instruction can be run in parallel - this is called “instruction-level-
parallelism”.
The available execution units indicate what instructions can be parallelized - we’ll go over what that means on the next slide.

The prerequisite for instruction-level-parallelism is that there are no dependencies between instructions.

That means that something like 
A = B+C
D = A+B

Can’t be parallelized because the 2nd expression depends on the outcome of the 1st expressions



So let me quickly talk about what an execution unit actually is.

All modern CPUs are superscalar CPUs, that means that certain instruction can be run in parallel - this is called “instruction-level-
parallelism”.
The available execution units indicate what instructions can be parallelized - we’ll go over what that means on the next slide.

The prerequisite for instruction-level-parallelism is that there are no dependencies between instructions.

That means that something like 
A = B+C
D = A+B

Can’t be parallelized because the 2nd expression depends on the outcome of the 1st expressions



So let me quickly talk about what an execution unit actually is.

All modern CPUs are superscalar CPUs, that means that certain instruction can be run in parallel - this is called “instruction-level-
parallelism”.
The available execution units indicate what instructions can be parallelized - we’ll go over what that means on the next slide.

The prerequisite for instruction-level-parallelism is that there are no dependencies between instructions.

That means that something like 
A = B+C
D = A+B

Can’t be parallelized because the 2nd expression depends on the outcome of the 1st expressions



If we take our handy documentation we can see that there’s this list, which gives you an idea of what instructions can be parallelized.
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So let’s go back to our naive example.

Unfortunately we have several dependencies here.

BilinearSampleAtPosition depends on the output of Transform2D and WriteSampleAtPosition depends on the output of 

BilinearSampleAtPosition.

As seen before, this will result in sub-optimal instruction-level-parallelism.
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What we could do however is execute multiple elements per loop iteration since each loop iteration is independent.

This is called loop unrolling.

This is what the naive code would look like with 4x loop unrolling applied.

Note that we also have to change the Transform2D, BilinearSampleAtPosition & WriteSampleAtPosition functions to work on 4 elements.
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So after this has been added, let’s check the Microarchitecture Exploration analysis again in V-Tune.

This is what we had before and 
This is what we have now with the loop unrolling inplace.

As you can see the CPI Rate went down (this is good) and we’re also less Back-End Bound than before. 
This is an indicator that this code now is better parallelizable on an instruction level.

The icing on the cake is that this also leaves more room for the compiler to apply optimizations like auto-vectorization, but we’ll go into more 
detail about that later.
Overall the code is still readable and the changes that we’ve had to do are only minimal.

The reward for our work is about a 50ms improvement over the naive version.



So after this has been added, let’s check the Microarchitecture Exploration analysis again in V-Tune.

This is what we had before and 
This is what we have now with the loop unrolling inplace.

As you can see the CPI Rate went down (this is good) and we’re also less Back-End Bound than before. 
This is an indicator that this code now is better parallelizable on an instruction level.

The icing on the cake is that this also leaves more room for the compiler to apply optimizations like auto-vectorization, but we’ll go into more 
detail about that later.
Overall the code is still readable and the changes that we’ve had to do are only minimal.

The reward for our work is about a 50ms improvement over the naive version.



So after this has been added, let’s check the Microarchitecture Exploration analysis again in V-Tune.

This is what we had before and 
This is what we have now with the loop unrolling inplace.

As you can see the CPI Rate went down (this is good) and we’re also less Back-End Bound than before. 
This is an indicator that this code now is better parallelizable on an instruction level.

The icing on the cake is that this also leaves more room for the compiler to apply optimizations like auto-vectorization, but we’ll go into more 
detail about that later.
Overall the code is still readable and the changes that we’ve had to do are only minimal.

The reward for our work is about a 50ms improvement over the naive version.



So after this has been added, let’s check the Microarchitecture Exploration analysis again in V-Tune.

This is what we had before and 
This is what we have now with the loop unrolling inplace.

As you can see the CPI Rate went down (this is good) and we’re also less Back-End Bound than before. 
This is an indicator that this code now is better parallelizable on an instruction level.

The icing on the cake is that this also leaves more room for the compiler to apply optimizations like auto-vectorization, but we’ll go into more 
detail about that later.
Overall the code is still readable and the changes that we’ve had to do are only minimal.

The reward for our work is about a 50ms improvement over the naive version.



So after this has been added, let’s check the Microarchitecture Exploration analysis again in V-Tune.

This is what we had before and 
This is what we have now with the loop unrolling inplace.

As you can see the CPI Rate went down (this is good) and we’re also less Back-End Bound than before. 
This is an indicator that this code now is better parallelizable on an instruction level.

The icing on the cake is that this also leaves more room for the compiler to apply optimizations like auto-vectorization, but we’ll go into more 
detail about that later.
Overall the code is still readable and the changes that we’ve had to do are only minimal.

The reward for our work is about a 50ms improvement over the naive version.



Let’s check the memory access performance analysis of our program.

For that there’s the “Memory Access” Analysis in V-Tune.

Running this for our function shows us that we’re somewhat memory bound and have lots of cache misses.

Question to audience: “What could be the reason?”
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To get into what the reason for these performance problems are, we’ll have to do a quick excourse so that we’re all onboard regarding cpu caches.
I’ll give you quick, high level overview about cpu caches - there is more to this than what is on this slides but the informations on these slides
Should be enough so that the upcoming optimizations make sense.

So, let’s assume we load this image into memory (eg: using fread()).
If we now where to read the first pixel of this image (eg: via a pointer) the CPU will first check if the requested data is in one of its caches - more on that 
later.

If the data is in one of the caches - great.

In our case, where we want to access the first pixel of a newly loaded image however, the data will most likely not be in the CPU cache.
So what happens is that the data is getting read from main memory - this is orders of magnitude slower than accessing data from the CPU cache.

It won’t only read one pixel worth of data though (assuming that one pixel is 32bit) - it will read a whole cache line worth of data and put that line into the 
CPU cache.
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According to the documentation, a cache line is 64 byte - this could vary between different CPUs from different vendors, though.

CPUID can also be used to query the cache line size.

The CPU always reads a whole cache line when accessing even only 1 byte - this is done because it is assumed that you’re also interested 

in neighboring data (eg. if you loop over an array and work on every item).

Additionally, there’s a piece of hardware in the CPU called a prefetcher, this will detect sequential memory access and prefetch data from 

main memory into the CPU cache before it is actually accessed by your program.

By the time you actually do access this data, it’ll already be in the CPU cache and you’ll get a cache hit.
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CPUs mostly have multiple caches with different characteristics.

You have your L1 cache. Every core has it’s own private L1 cache which is mostly broken down into a L1 Data cache and L1 Instruction 

cache.

Then you have a somewhat larger L2 cache shared between cores and an even bigger but slower L3 cache which is also shared between 

cores.



So let’s look at this example again to understand how the prefetcher works.

Assume again that this image just got loaded into main memory and we have this loop that iterates over each pixel and does *something* 

with that pixel.

For the first access, we’ll get a cache miss since the data is most likely not in the CPU cache.

For successive accesses however, we’ll get cache hits because the whole cache line was loaded into the CPU cache.

At some time during this iteration, the prefetcher will kick in and prefetch the next cache line because a sequential access pattern has been 

detected.

By the time we exhausted the data of the first cache line, the next cache line has already been loaded into the cache because of this, 

resulting in cache hits.
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With all this in mind, let’s revisit our algorithm to answer the question “why are we memory bound and have so many LLC misses?”

Lets say we want to rotate this image by 50°.

Our algorithm works in a way where it iterates sequentially over every pixel of the output image, calculates the index using the

transformation matrix, reads the sample at that position and then

Writes the sample back to the output image.

The write access is sequentiel, no problem with this - but the read access is highly non-sequental and could produce a worst case where 

every read is a cache miss.
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The intel architecture optimization reference suggest to apply a loop blocking access pattern to improve memory access locality and reduce 

the chance of gettings cache misses.

Since our data set is a 2D array of pixels this is called loop blocking, for 1D data the same would be called strip-mining.

Basically all we do is to iterate not over the whole data-set but rather over a fixed-size block within the data-set.
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If we now apply this to our existing code, we’d get something like this.

We basically split the image into 64x64 blocks and then only iterate over the pixels within each block with the already known
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The result of this is that we’re not as heavily memory bound anymore and also completely reduced the LLC misses (which is kind of 

surprising that there are no cache misses anymore).

This is again an optimization that was done using minimal code changes and nicely builds on top of the loop unrolling.

It might be worth experimenting with different block sizes since the gains depend on the size of the cpu cache and the size of the data set.

Also code must be added to handle cases where the image is smaller then a block.

Doing this optimization improved the runtime by another 30ms.
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The next optimization is maybe not super low level but still worth talking about.

All modern CPUs are multi-core processors and so far our code is completely single threaded.

If you intend to work on performance critical software (eg games) it’s important to understand how to utilize all the cores in your CPU.

There are lots of traps to fall into, that we’ll go over in a bit but in general I’d say that it’s better to have multithreading code that is easy to 

reason about compared to having something that works but nobody quite knows why. This is most likely the code that will blow up during the 

final pushes of the software and that you definitely will spent much time on to debug and to understand.
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The concept of a job system lends itself perfectly for our use case.

A job is defined as an independent piece of work that is consumed by something known as workers.

Workers are mostly 1 or more threads that work on any given job in isolation.

Generally a job system is implemented as a single producer, multiple consumer concept where the main thread is the producer (produces 

jobs) and the worker are the consumer (consuming jobs). If the main thread is idle, it can also act as a consumer and take over work that 

has been assigned to a consumer yet.
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So to get this to work is unfortunately not as easy as changing a few lines. For this to work we have to do the following things.

We have to find out how many cores the cpu has and create worker threads.

We have to create the data for the jobs.

We have to schedule the jobs - this is basically where the tell the workers that there are jobs to do.

After that we have to wait until all jobs are finished - at this time the image is rotated.



To find out how many cores the current CPU has, we can either use the C++11 STL or use OS specific functions, like 

GetLogicalProcessorInformation() on win32.

A function based on the STL thread api could look like this.

Note that we subtract 1 from the core count since we also have the main thread that is already running on one of the cores.



For creating the independent jobs, we first create a new data structure that encapsulates all the data that a given jobs needs.



Then we have the data that is shared between all workers.

This is: the amount of jobs available, the job data and a mutex, which we’ll talk about in more detail later.

The function that creates and populates this shared data structure looks like this.



And then we have the entry point for each worker thread.

This function basically runs as long as there are jobs available.

We have to make sure that the write access (during the decrement) is guarded by a mutex. Is a data structure that makes sure that only one 

thread can lock the mutex at any given point in time.

If a thread tries to lock a mutex that is already locked by another thread, it’ll wait until the mutex is unlocked.

Once we have the job data, we just call the already known RotateImageBlock function from the loop blocking optimization.



The complete, new Rotate function now looks like this.

We first create the shared worker data, which also creates all the job data.

We then create all the worker and kick them off and after that we either work on non scheduled jobs or wait until all threads are finish.

After that the rotation of the image is done.

Looking at the performance result we see a big improvement - but be aware that this scales with the number of cores in the target CPU.
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Note that most engines or game frameworks already have a job system in place that you can just use, without having to create the workers 

by hand.

It’s also not uncommon to have multiple job systems with different granularities where eg. jobs in one job system have to be done within a 

frame (the frame will block until all jobs are finished) while jobs in another job system, within the same engine, can run over multiple frames 

(savegames come to mind).



Again, there are many traps to fall into with multithreading code like false sharing, race conditions or dead locks. All of there problems aren’t 

necessarily super obvious and your program might run fine on your machine but crash horribly on another.

That’s why I have to re-empathize that it makes sense to make data sharing as simple as possible to not run into these problems. A simple 

job queue like in our example will fit most use cases.
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The last optimization that I want to talk about today is SIMD, which stands for Single Instruction Multiple Data.

This is basically one instruction - like mul which works on multiple values at once.

To give you a concrete example consider this function which multiplies 4 floats by a multiplier.

The scalar version of this function, where every multiplication is done one after the other, would look like this.

The SIMD version of this function, where all multiplications are done with a single instruction, would look like this.
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Programming using SIMD is also known as “vectorization”.

There’s a feature called “auto-vectorization” that is part of the optimization step of most compilers. This step tries to analyze the code and to 

find use cases where the compiler can identify a “SIMD-Pattern” and generate SIMD instructions instead of scalar instruction.



But can we really rely on this?

There are many people out there in forums or chat groups that will just blindly trust the compiler.

But can we really do that?
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Going by my gut feeling, our 4x loop unrolled version of the rotation algorithm should be trivial to auto-vectorize by the compiler. But again, 

this doesn’t count - we need to be sure.

To get verification whether the code got auto vectorize or not, you can either check the generated Assembly code or check the HPC 

Performance Characterization Analysis in V-Tune.

Checking V-Tune, we see the harsh truth that there’s zero vectorization in our code. And that’s with optimizations enabled on the latest 

compiler version.
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But let’s also check the generated assembly code just for good measure.

Here’s another example with 4x loob unrolling. 

Using compiler explorer, we can see that the generated instructions are all scalar instructions working on a single element.
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If we hand-roll the SIMD version using SSE2 intrinsics we see that this generated the vectorized code.
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Just a quick cool-down: Yes, we just saw assembly code and yes, I know that is can be intimidating if you tried looking at assembly before 

and were overwhelmed.

It can be overwhelming at first because you see lots of things that don’t make sense yet. Try to get past this first feeling of 

overwhelmingness and try to understand what is happening on the assembly level. This is invaluable and the tools we have today make this 

not as painful as it used to be.

Especially compiler explorer is a tool I want to highlight here. This is a tool were you can compile soure code using different compilers and 

examine the generated assembly code.
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But back to our optimization: If you want to be 100% certain that a certain piece of code gets vectorized across compilers then you have to 

do it yourself or play with the source code to help the compiler with auto-vectorization. 

But if you want to roll your own SIMD implementation, you have to decide what instruction set(s) you want to target.

For ARM this choice is easy since there’s only NEON but for x86_64 you have choice between multiple instruction sets.

The decision what instruction set to use depends on the hardware that you’re targeting. Eg: if you work on software for a fixed platform like a 

game console then this becomes easy, just check what CPU the console uses and then you know what instruction sets will be available. For 

software targeting PCs this is a little bit more complicated.

To get a good feeling of what kind of hardware is out there, the Steam hardware survey might be good source of information.
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Like, looking at this survey from a few days ago we can already see that’s it’s safe to use SSE2 and SSE3. I would argue that even SSE4.x 

is safe to use.

For our problem AVX2 seems tempting. We have wider registers and pretty wide support with nearly 90% of steam users having a CPU that 

supports AVX2.

To not instantly crash for users that don’t have AVX2 support, code has to be added to check for support as run-time. For this the CPUID 

instruction can be used. This is an instruction that can be used to query information about the CPU. And we can use it to check for AVX2 

support.

If the CPU does not support AVX2 then we can either inform the user and terminate the program or we can provide the scalar version so 

that the program still works.
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Using SIMD for our problem is a good fit. Depending on what instruction set we use, we can either operate at 4, 8 or 16 pixel in parallel.

Since we choose to use AVX2, we can work on 8 pixels at a time.

You already saw in earlier examples that moving an algorithm to make use of SIMD intrinsics will greatly increase the amount of code that is 

written - so it makes no sense here to show you all the SIMD code in detail but for good measure here are 2 screenshots of the code. This is 

the complete thing with transformation, bilinear sampling and mirror addressing mode.
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To use the new code in our existing codebase, we have to add this code to the WorkerMain function.

We check for AVX2 support and run the AVX2 code if support has been detected and if not, we fall back to the scalar version.



Let’s check VTune again to see what it has to say and tada, it now correctly detects 100% vectorization in our function.

If even shows us what instruction sets have been used and all this work results in a nice performance improvement.

Looking at the performance, we see another nice boost.
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While this is nice and we’re now in the realm of real-time processing this is by far the most invasive code change since we had to completely 

rewrite the rotation function to make use of the AVX2 instruction set. Additionally we can’t even delete the old code path or else users 

without AVX2 won’t be able to run our program (we might AVX2 a hard requirement though).

On top of that I’d argue that the set of people how can read and debug this code has been reduced, but I might be a little bit pessimistic in 

this regard.

If you feel more comfortable writing “scalar-looking” C code then you might want to check out ISCP. ISCP is a compiler from Intel that 

targets a C language with additional extensions for better auto-vectorization.

Additionally there’s the Intel Intrinsics Guide, which will show you all the SIMD intrinsics that come with the different instruction sets.
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After doing the AVX2 implementation we could still do more.

We could add an AVX-512 code path for hardware with AVX-512 support.

Additionally we could let each worker work on it’s own bitmap and merge them later for potentially better cache performance

We could also manually prefetch the pixel data for the next loop iteration by precalculating the pixel coordinates for the next loop iteration.

But it’s also important where to stop. We now achieved real-time performance with our example and doing more here doesn’t make sense 

right now. We could of course optimize this to death but again, this would also limit the set of people who can work on that code in the future. 

Also adding yet another code path - like the AVX-512 implementation, will increase the maintenance costs when, for example, a new feature 

has to be added.
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So let’s quickly recap where we started and how we got to our current result.

We first started with the super naive scalar version and then used VTune to figure out different bottlenecks.

The first optimization we applied was the loop unrolling.

After that we looked at the memory access analysis and added loop blocking to make the memory access pattern more local to decrease the 

amount of cache misses.

Then we took our single-threaded algorithm and made it work in a multi-core context by utilizing a job system.

Finally, we pulled out the SIMD hammer and created an AVX2 implementation of the rotation code which effectively works on 8 pixels in 

parallel.



Let’s talk about somethings that I hope you can take away from this talk.

First of all: never assume, always measure!

This is even true if you try your code on a new CPU.

As an example:

I looked into the performance data of the instruction PDEP some while ago and found out the instruction took 2 orders of magnitude longer 

on AMD Zen2 vs AMD Zen3 CPUs. This could come down to several factors like the instruction being emulated in microcode on Zen2 and 

actually there being dedicated hardware for this instruction in Zen3 CPUs. But this is only a guess.
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It’s also important that you know your target hardware when you want to apply low-level optimizations. I can only recommend taking a look 

at the documentation. x86_64 and ARM are here to stay.

It’s also valuable to make yourself familiar with vendor specific profilers. If you’ve got an Intel CPU at home, download VTune and try to 

profile a piece of code of yours.

Also make sure to verify and test your assumptions about compiler optimizations. There’s lots of half-truths out there about this, be sure to 

not blindly trust the compiler.
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